Wieland Drift for Triangular Fully Packed Loop Configurations

نویسندگان

  • Sabine Beil
  • Ilse Fischer
  • Philippe Nadeau
چکیده

Triangular fully packed loop configurations (TFPLs) emerged as auxiliary objects in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers Aπ of FPLs corresponding to a given link pattern π. The focus of this article is the definition and study of Wieland drift on TFPLs. We show that the repeated application of this operation eventually leads to a configuration that is left invariant. We also provide a characterization of such stable configurations. Finally we apply Wieland drift to the study of TFPL configurations, in particular giving new and simple proofs of several results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangular Fully Packed Loop Configurations of Excess 2

Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple (u, v;w) of 01-words encoding its boundary conditions that must necessarily satisfy d(u) + d(v) 6 d(w), where d(u) denotes the number of inversions in u. Wieland gyratio...

متن کامل

A worm algorithm for the fully-packed loop model

We present a Markov-chain Monte Carlo algorithm of worm type that correctly simulates the fully-packed loop model on the honeycomb lattice, and we prove that it is ergodic and has uniform stationary distribution. The fully-packed loop model on the honeycomb lattice is equivalent to the zero-temperature triangular-lattice antiferromagnetic Ising model, which is fully frustrated and notoriously d...

متن کامل

On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching

We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13].

متن کامل

Refined Counting of Fully Packed Loop Configurations

Abstract. We give a generalisation of a conjecture by Propp on a summation formula for fully packed loop configurations. The original conjecture states that the number of configurations in which each external edge is connected to its neighbour is equal to the total number of configurations of size one less. This conjecture was later generalised by Zuber to include more types of configurations. ...

متن کامل

On FPL configurations with four sets of nested arches

The problem of counting the number of Fully Packed Loop (FPL) configurations with four sets of a, b, c, d nested arches is addressed. It is shown that it may be expressed as the problem of enumeration of tilings of a domain of the triangular lattice with a conic singularity. After reexpression in terms of non-intersecting lines, the Lindström-GesselViennot theorem leads to a formula as a sum of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015